报告题目: Stability problems in Symbolic Integration and Summation
主 讲 人:陈绍示副研究员
报告时间:2023年6月19日星期一上午9:30-12:00
报告地点:数理楼224会议室
报告摘要:This talk aims at motivating a dynamical aspect of symbolic integration and summation by studying some stability problems on iterated integration and summation of special functions. We first show some basic properties of stable functions in differential and difference fields and then characterize several special families of stable functions including rational functions, logarithmic functions, hyperexponential functions and hypergeometric terms. After that, we prove that all D-finite power series and P-recursive sequences are eventually stable. Some problems for future studies are proposed towards deeper dynamical studies in differential and difference algebra. This talk is based on a joint works with Xiuyun Li.
个人简介: 陈绍示, 现为中国科学院数学与系统科学研究院副研究员, 博士生导师。主要研究符号计算,计算微分代数与组合数学。2019年与合作者解决了组合中著名的Wilf-Zeilberger猜想,并发展了组合恒等式机器证明的第四代算法。近几年主要研究多变元幂级数的算术理论。目前担任Annals of Combinatorics, Journal of Difference Equations and Applications, ACM Communications in Computer Algebra, Maple Transactions, Journal of Systems Science and Complexity, 和《系统科学与数学》等杂志编委,并担任ACM SIGSAM (国际符号与代数计算专业委员会) 秘书长与中国数学会计算机数学专业委员会秘书长. 曾获得第二届 “吴文俊计算机数学青年学者奖”(2019),第46届国际符号与代数计算年会(ISSAC2021)“杰出论文奖”,与国际计算机代数应用大会(ACA2022)“青年学者奖”。